Dersimix Eğitim Harmanı
  Problemler
 

PROBLEMLER VE PROBLEM ÇEŞİTLERİ NELERDİR?

Kar-Zarar Problemleri

Maliyet:100  %20 kar   Satış:100+20=120
Maliyet:100 %20 İndirimli Satış:
100-20=80
İndirimli satışın üzerinden %20 karlı satış:
80.%120=(80.120):100=96

YÜZDE PROBLEMLERİ

Yüzde, paydası 100 olan kesirlere denir.

Örneğin, yüzde 50 (%50)= 50/100 = 1/2
  Yüzde 20 (%20) = 20/100 = 1/5

Bir kesri veya ondalık sayıyı yüzdeye çevirirken, 100 ile çarparız.

Örnekler: ½ x 100 = 50

İse

½ = %50
  ¼ x 100 = 25

İse

¼ = %25
  0.35 x 100 = 35

İse

0.35 = %35
  0.625 x 100 = 62.5

ise

0.625 = %62.5

Yüzdeyi kesre veya ondalık sayıya çevirirken, 100 ' e böleriz.

Örnekler: %28 = 28/100 = 7/25  
  %75 = 75/100 = ¾  
  %28 = 28/100 = 0.28  
  %75 = 75/100 = 0.25  

 Verilen miktarın yüzdesini bulma

Örnek1: 40 sayısnın %25 i kaçtır?

Yöntem: %25 i kesir olarak yazıp, 40 ile çarparız.

  40'ın %25'i =

25
100

x 40
    = ¼ x 40
    = 10

Örnek 2: 60'ın %50' si kaçtır?

    =

50
100

x 60
    = ½ x 60
    = 30  

 %10 = 10/100 =1/10 o halde bir sayının %10'unu kısa yoldan bulmak için sayıyı 10'a böleriz.

  30'un %10 u için  30 ÷ 10 = 3

80'nin %10 u 8

250'nin %10 u 25

16'nın %10 u 1,6

38'in %10 u 3.8

 Diğer yüzdelerle çalışırkende bunu kullanabiliriz:

  30'un %20 si = 3 x 2 = 6 (%10'nun iki katı)
  30'un %30 u = 3 x 3 = 9 (%10'nun üç katı)
  30'un %15 i = 30 un %10 + 30'un %5 i
    = 3 + 1.5
    = 4.5
Hesap makinası kullanmadan, 5 ve 10'nun katı olan tüm yüzdeleri bu yöntemle hesaplayabiliriz.

 Yüzde İle Artış veya Azalış

Örnek1: 40 YTL, %8 lik artış ile kaç YTL olur?

Yöntem: %8 i hesaplanır, tamamı ile toplanır.

  40'ın %8'i = 8/100 X 40
    = 40 ÷ 100 x 8
    = 3,2 (hesap makinası yöntemi)

O halde 40 YTL'nin %8 artışı 3,20

Bu mitar paranın tamamı ile toplanır ve 43,2 YTL bulunur.
Ya da

40'ın % (100 + 8 ) i hesaplanır = 40 ın %108 i
  = 40 ın 108/100
  = 40 ÷ 100 x108
  = 43.2 YTL

 Örnek 2: 40 YTL'nin %8 lik azalışı kaç YTL olur?

Bu durumda %8 i çıkartırız.

40 – 3.2 = 36,8 YTL

ya da

100 – 8 = 92, 40'ın %92'si 36,8 olarak doğrudan sonucu verir.

Örnek 3: Tüm ürünlerde %30 indirim yapan bir mağazada, 80 YTL olan bir ceketin indirimli satış fiyatı nedir?

İndirim miktarı = 80 nin % 30'u = 24 YTL

İndirimli satışı = 80 – 24 = 56 YTL

 Miktarın Yüzde Olarak Yazılması

Önce kesir biçiminde yazar, sonra yüzdeye çeviririz.

Örnek 1: 20 soruluk testin 18'ini doğru cevapladım. Doğru cevaplanan soruların yüzdesi nedir?

  Kesir = 18/20
  18/20 x 100 = 100 ÷ 20 x 18
    = 90
  O halde, 18/20 = %90

 Örnek 2: 40 şekerin 8 ini yedim. Yüzde kaçını yemişimdir?

  8/40

=

%20

Kalan yüzde kaçtır?

  100 – 20

=

80 O halde %80 ni kalmıştır.

FAİZ PROBLEMLERİ

f = a.n.t / 100 (yıllık faiz)
f = a.n.t / 1200 (aylık faiz)
f = a.n.t / 36000 (günlük faiz)
(a anapara, n faiz yüzdesi, t zaman, f faiz)

SAAT PROBLEMLERİ
 
|30.saat(akrep)-5,5.dakika(yelkovan|
=
kollar arasındaki açı
 
HAREKET PROBLEMLERİ
 
   Yol: x                 
   Hız: v
   Zaman: t
Yol= Hız . Zaman  x=v.t             
 Hız = Yol / Zaman   v=x/t
Zaman= Yol / Hız    t=x/v
Hareketliler aynı anda ve zıt yönde ise x = (v1 + v2). t
www.matematikcifatih.tr.gg
Hareketliler aynı anda ve aynı yönde 
ise x = (v1 - v2). t
Nehir problemlerinde ise herzaman kayığın hızından akıntının hızı çıkartılır.

YAŞ PROBLEMLERİ

Bir kişinin yaşı a olsun,
T yıl önceki yaşı : x-T
T yıl sonraki yaşı : x + T olur.
 
İki kişinin yaşları oranı yıllara
göre orantılı değildir.
n kişinin yaşları toplamı b ise
T yıl sonra b + n.T 
T yıl önce b - n.T
Kişiler arasındaki yaş farkı
her zaman aynıdır.
x yıl öncede yaş farkı a-b
x yıl sonrada yaş farkı a-b
Katlar ve oranlar hangi yılda verildiyse
denklem o yılda kurulur.
 
 İŞÇİ - HAVUZ PROBLEMLERİ

Bir işi;
A işçisi tek başına a saatte,
B işçisi tek başına b saatte,
C işçisi tek başına c saatte
yapabiliyorsa;
İş t saatte bitiyorsa
1/a + 1/b + 1/c = 1/t olur.
 A işçisi 1 saatte işin 1/a sını bitirir.
  A ile B birlikte t saatte işin
(1/a + 1/b).t sini bitirir.
A işçisi x saatte, B işçisi y saatte 
C işçisi z saatte
çalışarak işin tamamını bitirdiklerine göre üçü birlikte işi    k saatte bitiriyorsa,
k/x + k/y + k/z = 1 olur.
Havuz problemleri işçi problemleri
gibi çözülür.
A musluğu havuzun tamamını a saatte
doldurabiliyor.
Tabanda bulunan B musluğu dolu havuzun
tamamını tek başına b saatte boşaltabiliyor
olsun.
Bu iki musluk birlikte bu havuzun t saatte
   (1/a - 1/b).t sini doldurur.
Bu havuzun dolması için b > a olmalıdır.
Eğer havuz t saatte doluyorsa
 1/a - 1/b = 1/t
Havuz dolduruluyorsa dolduran musluk (+), boşaltan musluk (-) alınır.
Havuz boşaltılıyorsa dolduran musluk (-), boşaltan musluk (+) alınır.


 
 
 
Bugün 151 ziyaretçi (164 klik) kişi burdaydı!"
 
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol