HARFLİ İFADELER NE DEMEKTİR?
HARFLİ İFADE FORMÜLLERİ NELERDİR?
ÇARPANLARA AYIRMA
ORTAK ÇARPAN PARANTEZİNE ALMA
A(x) . B(x) ± A(x) . C(x) = A(x) . [B(x) ± C(x)]
En az dört terimi olan ifadeler ortak çarpan
parantezine alınacak biçimde gruplandırılır,
sonra ortak çarpan parantezine alınır.
|
ÖZDEŞLİKLER
1. İki Kare Farkı - Toplamı
I) a2 – b2 = (a – b) (a + b)
II) a2 + b2 = (a + b)2 – 2ab ya da
a2 + b2 = (a – b)2 + 2ab dir.
2. İki Küp Farkı - Toplamı
I) a3 – b3 = (a – b) (a2 + ab + b2 )
II) a3 + b3 = (a + b) (a2 – ab + b2 )
III) a3 – b3 = (a – b)3 + 3ab (a – b)
IV) a3 + b3 = (a + b)3 – 3ab (a + b)
3. n. Dereceden Farkı - Toplamı
I) n bir sayma sayısı olmak üzere,
xn – yn = (x – y) (xn – 1 + xn – 2y + xn – 3 y2
+ ... + xyn – 2 + yn – 1) dir.
II) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y) (xn – 1 – xn – 2y + xn – 3 y2
– ... – xyn – 2 + yn – 1) dir.
4. Tam Kare İfadeler
I) (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a – b)2 + 4ab
II) (a – b)2 = a2 – 2ab + b2
(a – b)2 = (a + b)2 – 4ab
III) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
IV) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
5. (a ± b)n nin Açılımı
Pascal Üçgeni
(a + b)n açılımı yapılırken, önce a nın
n . kuvvetten başlayarak azalan, b nin 0 dan
başlayarak artan kuvvetlerinin çarpımları
Sonra n nin Paskal üçgenindeki karşılığı
bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin;
çift kuvvetlerinde terimin önüne (+),
tek kuvvetlerinde terimin önüne
(–) işareti konulur.
• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
|
ÖRNEKLER:
1-)ax+bx+ay+by=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b).(x+y)
2-)x-ax+2x-2a=(x-ax)+(2x-2a)
=x(x-a)+2(x-a)
=(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
=a(x-1)-1(x-1)
=(x-1).(a-1)
2.Dereceden Denklemlerin Çözümü
2.dereceden denklemler, bilinmeyenin kuvvetinin en fazla “ 2” olduğu denklemlerdir. Örneğin, x 2 + 5 x + 6 = 0
Sıfıra Eşit Olan Denklemlerin Çözümleri
Eşitliğin sağ tarafı sıfıra eşit olan denklemlerde aşağıdaki yöntem kullanılır.
Örnek 1: x2 + 5x + 6 = 0 denklemini çözünüz.
1.Adım : Çarpanlarına ayırın
2.Adım: Her çarpanı sıfıra eşitleyin
(Not:Eğer parantezli iki ifadenin çarpımı sıfıra eşitse, parantezli ifadelerden bir sıfıra eşit olmak zorundadır).
3.Adım: Bu iki denklemi çözün
|
x + 3 = 0
|
veya
|
x + 2 = 0
|
|
|
x = –3
|
|
x = –2
|
|
O halde –3 ve –2 bu denklemin çözümleridir.
Denklemin grafiğinden dolayı 2 tane çözümü vardır. (Grafik çalışma notlarına bakınız).
Örnek 2: x2 + 7 x – 18 = 0 Denklemini çözünüz.
|
( x + 9)( x – 2)=0 |
|
|
|
x + 9 =0
|
veya
|
x – 2 =0
|
|
|
x = – 9
|
|
x = 2
|
|
Örnek 3: x2 – 8 x + 12 = 0 Denklemini çözünüz.
|
( x - 6)(x - 2) = 0 |
|
|
|
x - 2 = 0
|
veya
|
x – 6 = 0
|
|
|
x = 2
|
|
x = 6
|
|
Sıfıra Eşit Olmayan Denklemlerin Çözüm Yöntemi
Sıfıra eşit olmayan denklemlerin çözümünde uygulanacak yöntemi aşağıdaki örnek üzerinde görelim.
Örnek 1: x2 + 5 x + 3 = 17 denklemini çözünüz.
Eşitliğin sağ tarafını “ 0” yapmak için, eşitliğin her iki tarafından 17'yi çıkarın
|
x2+ 5 x – 14 =0
|
|
|
|
( x + 7)( x – 2)=0
|
|
|
|
x = –7
|
veya
|
x = 2 |